翻訳と辞書 |
Quantization (physics) : ウィキペディア英語版 | Quantization (physics)
In physics, quantization is the process of transition from a classical understanding of physical phenomena to a newer understanding known as "quantum mechanics". It is a procedure for constructing a quantum field theory starting from a classical field theory. This is a generalization of the procedure for building quantum mechanics from classical mechanics. One also speaks of field quantization, as in the "quantization of the electromagnetic field", where one refers to photons as field "quanta" (for instance as light quanta). This procedure is basic to theories of particle physics, nuclear physics, condensed matter physics, and quantum optics. == Quantization methods == Quantization converts classical fields into operators acting on quantum states of the field theory. The lowest energy state is called the vacuum state. The reason for quantizing a theory is to deduce properties of materials, objects or particles through the computation of quantum amplitudes, which may be very complicated. Such computations have to deal with certain subtleties called renormalization, which, if neglected, can often lead to nonsense results, such as the appearance of infinities in various amplitudes. The full specification of a quantization procedure requires methods of performing renormalization. The first method to be developed for quantization of field theories was canonical quantization. While this is extremely easy to implement on sufficiently simple theories, there are many situations where other methods of quantization yield more efficient procedures for computing quantum amplitudes. However, the use of canonical quantization has left its mark on the language and interpretation of quantum field theory.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Quantization (physics)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|